Bayesian Spectral Modeling for Multiple Time Series
نویسندگان
چکیده
منابع مشابه
A Hierarchical Bayesian Approach for Spatial Time Series Modeling
Despite the fact that the amount of datasets containing long economic time series with a spatial reference has significantly increased during the years, the presence of integrated techniques that aim to describe the temporal evolution of the series while accounting for the location of the measurements and their neighboring relations is very sparse in the econometric literature. This paper shows...
متن کاملA Bayesian Multiple Models Combination Method for Time Series Prediction
In this paper we present the Bayesian Combined Predictor (BCP), a probabilistically motivated predictor for time series prediction. BCP utilizes local predictors of several types (e.g. linear predictors, artificial neural network predictors, polynomial predictors etc.) and produces a final prediction which is a weighted combination of the local predictions; the weights can be interpreted as Bay...
متن کاملSpectral Decompositions of Multiple Time Series: A Bayesian Non-parametric Approach
We consider spectral decompositions of multiple time series that arise in studies where the interest lies in assessing the influence of two or more factors. We write the spectral density of each time series as a sum of the spectral densities associated to the different levels of the factors. We then use Whittle's approximation to the likelihood function and follow a Bayesian non-parametric appr...
متن کاملBayesian Estimation of the Spectral Density of a Time Series
This article describes a Bayesian approach to estimating the spectral density of a stationary time series. A nonparametric prior on the spectral density is described through Bernstein polynomials. Because the actual likelihood is very complicated, a pseudoposterior distribution is obtained by updating the prior using the Whittle likelihood. A Markov chain Monte Carlo algorithm for sampling from...
متن کاملSpectral Estimation of Stationary Time Series: Recent Developments
Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2019
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2018.1520114